Thrombopoietin requires additional megakaryocyte-active cytokines for optimal ex vivo expansion of megakaryocyte precursor cells.
نویسندگان
چکیده
Little is known concerning the interaction of thrombopoietin (TPO) with other megakaryocyte-active cytokines in directing the early events of megakaryocyte development. Culture of CD34(+) cells in interleukins (IL) -1, -6, -11, plus stem cell factor (SCF; S) results in a 10- to 12-fold expansion in total cell numbers, whereas total CD41(+) megakaryocytes are expanded approximately 120-fold over input levels. Addition of TPO to IL-1, -6, -11, S generates a biphasic proliferation of CD41(+) cells, accelerates their rate of production, and results in an ex vivo expansion of more than 200-fold. The addition of Flt-3 ligand (FL) increases CD41+ cell expansion to approximately 380-fold over input levels. In the absence of TPO, approximately 95% of the expanded cells show the phenotype of promegakaryoblasts; TPO and/or FL addition increases CD41 antigen density and ploidy in a subpopulation of promegakaryoblasts. A moderate (approximately sevenfold) expansion of megakaryocyte progenitor cells (colony-forming unit-megakaryocyte) occurs in the presence of IL-1, -6, -11, S, and the addition of TPO to this cocktail yields an approximately 17-fold expansion. We conclude that early proliferative events in megakaryocyte development in vitro are regulated by multiple cytokines, and that TPO markedly affects these early developmental steps. However, by itself, TPO is neither necessary nor sufficient to generate a full proliferative/maturational in vitro response within the megakaryocyte compartment. TPO clearly affects terminal differentiation and the development of (some) high-ploidy human megakaryocytes. However, its limited in vitro actions on human cell polyploidization suggest that additional megakaryocyte-active cytokines or other signals are essential for the maximal development of human megakaryocytes.
منابع مشابه
Recombinant human thrombopoietin: basic biology and evaluation of clinical studies.
Thrombocytopenia is a common medical problem for which the main treatment is platelet transfusion. Given the increasing use of platelets and the declining donor population, identification of a safe and effective platelet growth factor could improve the management of thrombocytopenia. Thrombopoietin (TPO), the c-Mpl ligand, is the primary physiologic regulator of megakaryocyte and platelet devel...
متن کاملThrombopoietin (c-mpl Ligand) Acts Synergistically With Erythropoietin, Stem Cell Factor, and Interleukin-l1 to Enhance Murine Megakaryocyte Colony Growth and Increases Megakaryocyte Ploidy In Vitro
Thrombopoietin (Tpo), the ligand for the ompl receptor, is a major regulator of platelet production in vivo. Treatment of mice with purified recombinant Tpo increases platelet count fourfold and expands colony-forming unit-megakaryocyte (CFU-Meg) numbers. Other cytokines including interleukin-3 (IL-3). IL-6, IL-11, erythropoietin (Epo), and stem cell factor (SCF) can stimulate megakaryopoiesis....
متن کاملPhosphatidylinositol 3-kinase is necessary but not sufficient for thrombopoietin-induced proliferation in engineered Mpl-bearing cell lines as well as in primary megakaryocytic progenitors.
Thrombopoietin and its receptor (Mpl) support survival and proliferation in megakaryocyte progenitors and in BaF3 cells engineered to stably express Mpl (BaF3/Mpl). The binding of thrombopoietin to Mpl activates multiple kinase pathways, including the Jak/STAT, Ras/Raf/MAPK, and phosphatidylinositol 3-kinase pathways, but it is not clear how these kinases promote cell cycling. Here, we show tha...
متن کاملThe Effect of Platelet Lysate on Expansion and Differentiation Megakaryocyte Progenitor Cells from Cord Blood CD34+ enriched Cells
Background: Umbilical cord blood hematopoietic stem cells (UCB-HSCs) are an attractive source for transplantation. The generation of megakaryocyte-committed cells could lead to shorten period of thrombocytopenia after HSCs transplantation. Platelet lysate (PL) unlike fetal bovine serum (FBS) can prevent immune problems as well as avert transmission of certain diseases to the recipient. In this ...
متن کاملThrombopoietin: biology and potential clinical applications.
After an almost 40-year search for a primary regulatory of platelet production, thrombopoietin has recently been purified and cloned. Thrombopoietin regulates all stages in the production of platelets by promoting both the proliferation of megakaryocyte progenitors and their maturation into platelet-producing megakaryocytes. In preclinical studies in normal mice and non-human primates, administ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 91 11 شماره
صفحات -
تاریخ انتشار 1998